N ov 1 99 8 Sphere Packings II

نویسنده

  • Thomas C. Hales
چکیده

An earlier paper describes a program to prove the Kepler conjecture on sphere packings. This paper carries out the second step of that program. A sphere packing leads to a decomposition of R into polyhedra. The polyhedra are divided into two classes. The first class of polyhedra, called quasi-regular tetrahedra, have density at most that of a regular tetrahedron. The polyhedra in the remaining class have density at most that of a regular octahedron (about 0.7209). Section

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. M G ] 1 1 N ov 1 99 8 SPHERE PACKINGS III

This paper is a continuation of the first two parts of this series ([I],[II]). It relies on the formulation of the Kepler conjecture in [F]. The terminology and notation of this paper are consistent with these earlier papers, and we refer to results from them by prefixing the relevant section numbers with I, II, or F. Around each vertex is a modification of the Voronoi cell, called the V -cell ...

متن کامل

ar X iv : c on d - m at / 9 51 11 05 v 1 2 1 N ov 1 99 5 A Model for Force Fluctuations in Bead Packs

We study theoretically the complex network of forces that is responsible for the static structure and properties of granular materials. We present detailed calculations for a model in which the fluctuations in the force distribution arise because of variations in the contact angles and the constraints imposed by the force balance on each bead of the pile. We compare our results for force distri...

متن کامل

Densest local sphere-packing diversity. II. Application to three dimensions.

The densest local packings of N three-dimensional identical nonoverlapping spheres within a radius R(min)(N) of a fixed central sphere of the same size are obtained for selected values of N up to N=1054. In the predecessor to this paper [A. B. Hopkins, F. H. Stillinger, and S. Torquato, Phys. Rev. E 81, 041305 (2010)], we described our method for finding the putative densest packings of N spher...

متن کامل

Deriving Finite Sphere Packings

Sphere packing problems have a rich history in both mathematics and physics; yet, relatively few analytical analyses of sphere packings exist, and answers to seemingly simple questions are unknown. Here, we present an analytical method for deriving all packings of n spheres in R3 satisfying minimal rigidity constraints (≥ 3 contacts per sphere and ≥ 3n− 6 total contacts). We derive such packing...

متن کامل

New Horizons in Sphere Packing Theory, Part I: Fundamental Concepts & Constructions, from Dense to Rare

The field of n-dimensional sphere packings is elegant and mature in its mathematical development and characterization. However, it is still relatively limited in its practical applications, especially for n > 3. The present line of research intends to open up two broad new areas for profitable application of this powerful body of mathematical literature in science and engineering. Towards this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997